cExams.net
Test # 170 [18-Dec-2017]


1.
The little boy knows (a) / how to start the engine (b) / but does not know to stop it. (c) / No error (d)

Login/Register to access massive collection of FREE questions and answers.
Login/Register

Test Index
151 [29-Nov-2017] 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 [14-Dec-2017] 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 [29-Dec-2017] 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 [13-Jan-2018] 197 198 199 200
  • Rules to play Squash
  • Most Dangerous Animal in the World
  • Indira Gandhi
  • 25 Handy Health Advices
  • Amazing Halloween Makeup Ideas For Women
  • Popular Men Deodorant Brands

  • Simple Science

    The Lever

    Man's Way of Helping Himself:
    Balance a foot rule, containing a hole at its middle point F, as shown in Figure. If now a weight of 1 pound is suspended from the bar at some point, say 12, the balance is disturbed, and the bar swings about the point F as a center. The balance can be regained by suspending an equivalent weight at the opposite end of the bar, or by applying a 2-pound weight at a point 3 inches to the left of F. In the latter case a force of 1 pound actually balances a force of 2 pounds, but the 1-pound weight is twice as far from the point of suspension as is the 2-pound weight. The small weight makes up in distance what it lacks in magnitude.

    Such an arrangement of a rod or bar is called a lever. In any form of lever there are only three things to be considered: the point where the weight rests, the point where the force acts, and the point called the fulcrum about which the rod rotates.

    The distance from the force to the fulcrum is called the force arm. The distance from the weight to the fulcrum is called the weight arm; and it is a law of levers, as well as of all other machines, that the force multiplied by the length of the force arm must equal the weight multiplied by the length of the weight arm.

    Force force arm = weight weight arm.


    A force of 1 pound at a distance of 6, or with a force arm 6, will balance a weight of 2 pounds with a weight arm 3; that is,

    1 6 = 2 3.


    Similarly a force of 10 pounds may be made to sustain a weight of 100 pounds, providing the force arm is 10 times longer than the weight arm; and a force arm of 800 pounds, at a distance of 10 feet from the fulcrum, may be made to sustain a weight of 8000 pounds, providing the weight is 1 foot from the fulcrum.

    FIG. - The principle of the lever.


    Chourishi Systems